ANUSHRUT JIGNASU

ajignasu@iastate.edu | Website: ajignasu.github.io | LinkedIn: anushrutjignasu

EDUCATION

Iowa State University

Ph.D. Student, Mechanical Engineering Co-major: Computer Engineering

Iowa State University

B.Sc. Mechanical Engineering Minor in Biomedical Engineering

RESEARCH INTERESTS

Neural Fields, Computer Vision and Graphics, Deep Learning, 3D Reconstruction, Computer Aided Design, Additive Manufacturing

SKILLS

Programming	Python, C++, C#, MATLAB, IATEX
Technologies	Pytorch, Pytorch Geometric, OpenCV, COLMAP, Unity
Tools	Linux, Blender, Solidworks, Autodesk Fusion 360

GRADUATE RESEARCH

Research Assistant in IDEA Lab | Iowa State University

1. Topology-aware Neural Implicit Surface Reconstruction

- · Developing an MLP-based framework for implicit surface reconstruction from noisy point cloud data.
- · Integrating topological data analysis to achieve precise manifold mesh reconstruction.
- $\cdot\,$ Exploring feasibility of neural radiance fields for multi-view 3D reconstruction and mesh extraction.

2. Large Language Models for G-code Debugging, Manipulation, and Comprehension

- · Evaluated six foundational LLMs for G-code comprehension and debugging in 3D printing.
- $\cdot\,$ Crafted effective prompts enabling G-code error correction and geometric transformations.
- $\cdot\,$ Gauged the proficiency of LLMs to comprehensively understand G-code.

3. Conformal 3D Printing

- $\cdot\,$ Developing a NURBS-based algorithm for Conformal 3D printing.
- · Implemented a curved toolpath generation algorithm for non-planar material deposition.
- · Conducting quality and process optimization for minimizing build time.

4. Geometric Deep Learning for Manufacturability Analysis

- $\cdot\,$ Utilizing Graph Neural Networks for manufacturability analysis of 3D triangulated geometries.
- $\cdot\,$ Implementing various graph architectures using PyTorch Geometric.

WORK EXPERIENCE

Genies, Los Angeles CA

Machine Learning Engineering Intern

- \cdot Developing algorithms for mesh deformation and alignment based on the SMPL model.
- \cdot Investigated differentiable methods for human pose and shape estimation.
- $\cdot\,$ Optimized techniques to by pass the ground truth landmark requirement and achieve pose convergence.

Parametric Studio Inc, Ames IA

Mechanical Engineering Intern

- \cdot Designed and developed seven physical prototyping kits using a CNC machine, 3D printer, and laser cutter.
- $\cdot \ \ \text{Optimized material and manufacturing processes through trade studies, achieving a cost-effective design solution.}$
- $\cdot \ {\rm Conducted \ detailed \ tolerance \ stack-up \ analyses \ and \ created \ precise \ engineering \ drawings \ using \ {\rm GD}\&T \ principles.$

Expected: Fall 2025 GPA: 3.62/4.0

Aug 2016 - May 2020 GPA: 3.5/4.0

Aug 2021 - Ongoing

May 2024 - Aug 2024

July 2020 - Jan 2021

Smiths Medical (now ICU Medical), Minneapolis MN

Research and Development Intern

- $\cdot\,$ Engineered friction models that improved efficiency by 50% for infusion applications.
- · Conducted physics-based simulations using MATLAB, Simulink, and micro-controller setups.
- $\cdot\,$ Managed and revised CAD drawings for established infusion products.

PUBLICATIONS

- A. Jignasu, K O. Marshall, A. K. Mishra, L. N. Rillo, B. Ganapathysubramanian, A. Balu, C. Hegde, and A. Krishnamurthy. Slice-100K: A Multimodal Dataset for Extrusion-based 3D Printing. *NeurIPS*, 2024
- 2. A. Jignasu, A. Balu, S. Sarkar, C. Hegde, B. Ganapathysubramanian, and A. Krishnamurthy. SDFConnect: Neural Implicit Surface Reconstruction of a Sparse Point Cloud with Topological Constraints. *Deep Learning* for Geometric Computing Workshop (DLGC), CVPR, 2024
- 3. A. Jignasu, J. Rurup, E. Secor, and A. Krishnamurthy. NURBS-based path planning for aerosol jet printing of conformal electronics. *Journal of Manufacturing Processes*, 2024
- 4. E. Herron, J. Rade, A. Jignasu, B. Ganapathysubramanian, A. Balu, S. Sarkar, and A. Krishnamurthy. Latent Diffusion Models for Structural Component Design. *Computer-Aided Design*, 2024
- 5. A. Jignasu, K. Marshall, B. Ganapathysubramanian, A. Balu, C. Hegde, and A. Krishnamurthy. Towards Foundational AI Models for Additive Manufacturing: Language Models for G-Code Debugging, Manipulation, and Comprehension. arXiv preprint arXiv:2309.02465, 2023
- 6. K. O. Marshall, M. Pham, A. Joshi, A. Jignasu, A. Balu, A. Krishnamurthy, and C. Hegde. ZeroForge: Feedforward Text-to-Shape Without 3D Supervision. arXiv preprint arXiv:2306.08183, 2023
- J. Rade, A. Jignasu, E. Herron, A. Corpuz, B. Ganapathysubramanian, S. Sarkar, A. Balu, and A. Krishnamurthy. Deep learning-based 3D Multigrid Topology Optimization of Manufacturable Designs. *Engineering Applications of Artificial Intelligence*, 2023
- 8. S. Ghadai, A. Jignasu, and A. Krishnamurthy. Direct 3D Printing of Multi-level Voxel Models. *Additive Manufacturing*, 2021

TEACHING

1. "Mini course on 3D Vision", Advanced Deep Learning Group, TrAC, Iowa State University 2023.

TALKS

- 1. "SDFConnect: Neural Implicit Surface Reconstruction of a Sparse Point Cloud with Topological Constraints." Deep Learning for Geometric Computing (DLGC) Workshop, **CVPR 2024**.
- 2. "Evaluating Large Language Models for G-Code Debugging, Manipulation, and Comprehension." IEEE International Workshop on LLM-Aided Design, LAD 2024.
- 3. "Deep Learning-based 3D Multigrid Topology Optimization of Manufacturable Designs." Workshop on Scientific Machine Learning: Foundations and Applications, **TrAC**, **Iowa State University 2022**.
- 4. "Direct Fused Deposition Modeling (FDM) Additive Manufacturing of Voxelized CAD Models." 16th U.S. National Congress on Computational Mechanics, **USNCCM 2021**.

RELEVANT COURSEWORK

· Deep Learning	· Surface Modeling	\cdot GPU Computing
· Machine Vision	\cdot Computational Geometry	· Virtual Reality
· Computer Graphics	· Solid Modeling	\cdot Steganography

SERVICE